Spectral analysis of a wave equation with Kelvin-Voigt damping
نویسندگان
چکیده
منابع مشابه
Stability of a Nonlinear Axially Moving String with the Kelvin-Voigt Damping
In this paper, a nonlinear axially moving string with the Kelvin-Voigt damping is considered. It is proved that the string is stable, i.e., its transversal displacement converges to zero when the axial speed of the string is less than a certain critical value. The proof is established by showing that a Lyapunov function corresponding to the string decays to zero exponentially. It is also shown ...
متن کاملTransmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping: Nonexponential, Strong, and Polynomial Stability
We investigate transmission problems between a (thermo-)viscoelastic system with Kelvin-Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin-Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The ap...
متن کاملOn the Controllability of a Wave Equation with Structural Damping
We study the boundary controllability properties of a wave equation with structural damping ytt− yxx− 2ytxx = 0, y(0, t) = 0, y(1, t) = h(t) where 2 is a strictly positive parameter depending on the damping strength. We prove that this equation is not spectrally controllable and that the approximate controllability depends on the functional space in which the initial value Cauchy problem is stu...
متن کاملCritical Exponent for a Nonlinear Wave Equation with Damping
It is well known that if the damping is missing, the critical exponent for the nonlinear wave equation gu=|u| p is the positive root p0(n) of the equation (n&1) p&(n+1) p&2=0, where n 2 is the space dimension (for p0(1)= , see Sideris [14]). The proof of this fact, known as Strauss' conjecture [17], took more than 20 years of effort, beginning with Glassey doi:10.1006 jdeq.2000.3933, available ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ZAMM
سال: 2010
ISSN: 0044-2267,1521-4001
DOI: 10.1002/zamm.200900275